Show Menu
THEMEN×

ExperienceEvent-Abfragen

Zusätzlich zu den standardmäßigen SQL-Abfragen unterstützt Adobe Experience Platform Abfrage Service das Schreiben von Abfragen mit ExperienceEvents. Ein ExperienceEvent ist eine Experience Data Model-Klasse (XDM), die einen unveränderlichen, nicht aggregierten Schnappschuss des Systems darstellt, wenn ein Benutzer mit einer Website oder einem Dienst interagiert und daher für die Analyse der Zeitdomäne verwendet werden kann. Weitere Informationen zu XDM- und Experience Ereignisses finden Sie in der XDM-Systemübersicht. Durch die Kombination von Abfrage Service und ExperienceEvents können Sie Verhaltenstrends unter Ihren Benutzern effektiv verfolgen. Das folgende Dokument enthält Beispiele für Abfragen mit ExperienceEvents.

Erstellen eines Trendberichts mit Ereignissen nach Tagen über einen bestimmten Datumsbereich

Im folgenden Beispiel wird ein Trendbericht mit Ereignissen über einen bestimmten Datumsbereich erstellt, der nach Datum gruppiert ist. Insbesondere werden verschiedene Analysewerte als A, B und C zusammengefasst und dann die Anzahl der Wiedergaben von Parkas summiert.
Die Zeitstempelspalte in Experience Ereignis-Datensätzen befindet sich in UTC. Im folgenden Beispiel wird die from_utc_timestamp() Funktion verwendet, um den Zeitstempel von UTC in EDT umzuwandeln. Anschließend wird mit der date_format() Funktion das Datum vom Rest des Zeitstempels isoliert.
SELECT 
date_format( from_utc_timestamp(timestamp, 'EDT') , 'yyyy-MM-dd') as Day,
SUM(web.webPageDetails.pageviews.value) as pageViews,
SUM(_experience.analytics.event1to100.event1.value) as A,
SUM(_experience.analytics.event1to100.event2.value) as B,
SUM(_experience.analytics.event1to100.event3.value) as C,
SUM(
    CASE 
    WHEN _experience.analytics.customDimensions.evars.evar1 = 'parkas' 
    THEN 1 
    ELSE 0 
    END) as viewedParkas
FROM your_analytics_table 
WHERE _ACP_YEAR = 2019 AND _ACP_MONTH = 3 
GROUP BY Day 
ORDER BY Day ASC, pageViews DESC;

     Day     | pageViews |   A    |   B   |    C    | viewedParkas
-------------+-----------+--------+-------+---------+--------------
 2019-03-01  |   55317.0 | 8503.0 | 804.0 | 1578.0  |           73
 2019-03-02  |   55302.0 | 8600.0 | 854.0 | 1528.0  |           86
 2019-03-03  |   54613.0 | 8162.0 | 795.0 | 1568.0  |          100
 2019-03-04  |   54501.0 | 8479.0 | 832.0 | 1509.0  |          100
 2019-03-05  |   54941.0 | 8603.0 | 816.0 | 1514.0  |           73
 2019-03-06  |   54817.0 | 8434.0 | 855.0 | 1538.0  |           76
 2019-03-07  |   55201.0 | 8604.0 | 843.0 | 1517.0  |           64
 2019-03-08  |   55020.0 | 8490.0 | 849.0 | 1536.0  |           99
 2019-03-09  |   43186.0 | 6736.0 | 643.0 | 1150.0  |           52
 2019-03-10  |   48471.0 | 7542.0 | 772.0 | 1272.0  |           70
 2019-03-11  |   56307.0 | 8721.0 | 818.0 | 1571.0  |           81
 2019-03-12  |   55374.0 | 8653.0 | 843.0 | 1501.0  |           59
 2019-03-13  |   55046.0 | 8509.0 | 887.0 | 1556.0  |           65
 2019-03-14  |   55518.0 | 8551.0 | 848.0 | 1516.0  |           77
 2019-03-15  |   55329.0 | 8575.0 | 818.0 | 1607.0  |           96
 2019-03-16  |   55030.0 | 8651.0 | 815.0 | 1542.0  |           66
 2019-03-17  |   55143.0 | 8435.0 | 774.0 | 1572.0  |           65
 2019-03-18  |   54065.0 | 8211.0 | 816.0 | 1574.0  |          111
 2019-03-19  |   55097.0 | 8395.0 | 771.0 | 1498.0  |           86
 2019-03-20  |   55198.0 | 8472.0 | 863.0 | 1583.0  |           82
 2019-03-21  |   54978.0 | 8490.0 | 820.0 | 1580.0  |           83
 2019-03-22  |   55464.0 | 8561.0 | 820.0 | 1559.0  |           83
 2019-03-23  |   55384.0 | 8482.0 | 800.0 | 1139.0  |           82
 2019-03-24  |   55295.0 | 8594.0 | 841.0 | 1382.0  |           78
 2019-03-25  |   42069.0 | 6365.0 | 606.0 | 1509.0  |           62
 2019-03-26  |   49724.0 | 7629.0 | 724.0 | 1553.0  |           44
 2019-03-27  |   55111.0 | 8524.0 | 804.0 | 1524.0  |           94
 2019-03-28  |   55030.0 | 8439.0 | 822.0 | 1554.0  |           73
 2019-03-29  |   55281.0 | 8601.0 | 854.0 | 1580.0  |           73
 2019-03-30  |   55162.0 | 8538.0 | 846.0 | 1534.0  |           79
 2019-03-31  |   55437.0 | 8486.0 | 807.0 | 1649.0  |           68
 (31 rows)

Abrufen einer Liste von Besuchern, die nach der Anzahl der Ansichten organisiert sind.

Im folgenden Beispiel wird ein Bericht erstellt, in dem die IDs der Benutzer Liste werden, die die meisten Seiten aufgerufen haben.
SELECT 
endUserIds._experience.aaid.id, 
SUM(web.webPageDetails.pageviews.value) as pageViews 
FROM your_analytics_table
GROUP BY endUserIds._experience.aaid.id 
ORDER BY pageViews DESC
LIMIT 10;

               id                  | pageViews
-----------------------------------+-----------
 457C3510571E5930-69AA721C4CBF9339 |     706.0
 776F85658792C017-6491FE6570382A01 |     700.0
 6BEC9C6AB52E779F-28F5B023113F2C85 |     654.0
 1C0CCFB2DC63611E-6E4A4D4142AEB613 |     642.0
 112EE9A6F3BE29D1-514A6C355A2C9EF6 |     629.0
 CCC75A0E6AC7F2FA-11D58515D370F626 |     624.0
 749F850A44153120-3710C53FA2162349 |     614.0
 2B668C6DDDAF0C505-92EDCC072F7CDDA |     587.0
 7EB7257335935320-101921AF45111FE6 |     586.0
 5F4759CA80DCA9C9-2C0DA93D80D9DBFA |     586.0
(10 rows)

Wiedergeben von Sitzungen eines Besuchers

Im folgenden Beispiel werden die letzten 100 Seiten Liste, die ein bestimmter Benutzer angezeigt hat.
SELECT 
timestamp, 
web.webReferrer.type as referrerType, 
web.webReferrer.URL as referrer, 
web.webPageDetails.name as pageName, 
_experience.analytics.event1to100.event1.value as A, 
_experience.analytics.event1to100.event2.value as B, 
_experience.analytics.event1to100.event3.value as C, 
web.webPageDetails.pageviews.value as pageViews
FROM your_analytics_table 
WHERE endUserIds._experience.aaid.id = '457C3510571E5930-69AA721C4CBF9339' 
ORDER BY timestamp 
LIMIT 100;

      timestamp       |  referrerType  |                            referrer                                |                 pageName            |  A  |  B  |  C  | pageViews
----------------------+----------------+--------------------------------------------------------------------+-------------------------------------+-----+-----+-----+--------------
2019-11-08 17:15:28.0 | typed_bookmark |                                                                    |                                     |     |     |     |
2019-11-08 17:53:05.0 | social         | http://www.reddit.com                                              | Home                                |     |     |     |          1.0
2019-11-08 17:53:45.0 | typed_bookmark |                                                                    | Kids                                |     |     |     |          1.0
2019-11-08 19:22:34.0 | typed_bookmark |                                                                    |                                     |     |     |     |          
2019-11-08 20:01:12.0 | search_engine  | http://www.google.com/search?ie=UTF-8&q=laundry parkas&cid=sem:115 | Home                                |     |     |     |          1.0 
2019-11-08 20:01:57.0 | typed_bookmark |                                                                    | Kids                                |     |     |     |          1.0
2019-11-08 20:03:36.0 | typed_bookmark |                                                                    | Search Results                      | 1.0 |     |     |          1.0
2019-11-08 20:04:30.0 | typed_bookmark |                                                                    | Product Details: Pemmican Power Bar |     |     |     |          1.0
2019-11-08 20:05:27.0 | typed_bookmark |                                                                    | Shopping Cart: Cart Details         |     |     |     |          1.0
2019-11-08 20:06:07.0 | typed_bookmark |                                                                    | Shopping Cart: Shipping Information |     |     |     |          1.0
2019-11-08 20:07:02.0 | typed_bookmark |                                                                    | Shopping Cart: Billing Information  |     |     | 1.0 |          1.0
2019-11-08 20:07:52.0 | typed_bookmark |                                                                    | Shopping Cart: Order Review         |     |     |     |          1.0
2019-11-08 20:08:45.0 | typed_bookmark |                                                                    | Order Confirmation                  |     |     |     |          1.0
2019-11-08 20:09:24.0 | typed_bookmark |                                                                    | Home                                |     |     |     |          1.0
2019-11-08 20:10:03.0 | typed_bookmark |                                                                    | Editorial Page: Camping Essentials  |     |     |     |          1.0
2019-11-08 20:11:01.0 | typed_bookmark |                                                                    | Account Registration|Form           |     |     |     |          1.0
2019-11-08 20:11:38.0 | typed_bookmark |                                                                    | Seasonal Sale                       |     |     |     |          1.0
2019-11-08 20:12:10.0 | typed_bookmark |                                                                    | Blog: Iris Sagan                    |     |     |     |          1.0
2019-11-08 20:13:09.0 | typed_bookmark |                                                                    | Product Details: UltraTech Socks    |     |     |     |          1.0
2019-11-08 20:14:05.0 | typed_bookmark |                                                                    | Seasonal Sale                       |     |     |     |          1.0

Ansicht eines Datenaggregationsberichts eines Besuchers

Das folgende Beispiel zeigt einen Aggregat-Bericht mit verschiedenen Analysewerten für einen bestimmten Benutzer.
SELECT 
endUserIds._experience.aaid.id, 
SUM(web.webPageDetails.pageviews.value) as pageViews, 
SUM(_experience.analytics.event1to100.event1.value) as A, 
SUM(_experience.analytics.event1to100.event2.value) as B, 
SUM(_experience.analytics.event1to100.event3.value) as C,
SUM(
    CASE 
    WHEN _experience.analytics.customDimensions.evars.evar1 = 'parkas' 
    THEN 1 
    ELSE 0 
    END) as viewedParkas
FROM your_analytics_table 
WHERE endUserIds._experience.aaid.id = '457C3510571E5930-69AA721C4CBF9339' 
GROUP BY endUserIds._experience.aaid.id
ORDER BY pageViews DESC;

               id                 | pageViews |   A   |   B   |   C   | viewedParkas
----------------------------------+-----------+-------+-------+-------+--------------
457C3510571E5930-69AA721C4CBF9339 |     706.0 | 83.0  |  7.0  | 38.0  |          22

Nächste Schritte

Weitere Informationen zu Beispielfunktionen mithilfe von Adobe Defined Functions (ADFs) finden Sie im Handbuch Adobe Defined Functions (Adobe Defined Functions-Handbuch). Allgemeine Hinweise zur Ausführung von Abfragen finden Sie im Handbuch zur Ausführung von Abfragen im Abfrage Service .