Show Menu
TOPICS×

Real-time Machine Learning overview (Alpha)

Real-time Machine Learning is not available to all users yet. This feature is in alpha and still being tested. This document is subject to change.
Real-time Machine Learning can dramatically enhance the relevance of your digital experience content for your end-users. This is made possible by leveraging real-time inferencing and continuous learning on the Experience Edge.
A combination of seamless computation on both the Hub and the Edge dramatically reduces the latency that is traditionally involved in powering hyper-personalized experiences that are both relevant and responsive. Hence, Real-time Machine Learning provides inferences with incredibly low latency for synchronous decision-making. Examples include rendering personalized web page content or surfacing of an offer or discount to reduce churn and increase conversions on a web store.

Real-time Machine Learning architecture

The following diagrams provide a overview for the Real-time Machine Learning architecture. Currently, alpha has a more simplified version.

Real-time Machine Learning workflow

The following workflow outlines the typical steps and results involved in creating and utilizing a Real-time Machine Learning model.

Data ingestion and preparations

Data is ingested and transformed with the Experience Data Model (XDM) on Adobe Experience Platform. This data is used for model training. To learn more about XDM, visit the XDM overview .

Authoring

Create a Real-time Machine Learning model by authoring it from scratch or bringing it in as a pre-trained serialized ONNX model in Adobe Experience Platform Jupyter Notebooks.

Deployment

Deploy your model to Experience Edge to create a Real-time Machine Learning service in the Service Gallery using the Prediction API endpoint.

Inference

Use the Prediction REST API endpoint to generate machine learning insights in real-time.

Delivery

Marketers can then define segments and rules that map Real-time Machine Learning scores to experiences using Adobe Target. This allows for visitors of your brand's website to be shown a same or next-page hyper-personalized experience in real time.

Current functionality

Real-time Machine Learning is currently in alpha. The functionality outlined below is subject to change as more features and nodes are made available.
Alpha limitations:
  • Currently, only ONNX based models are supported.
  • Functions used in nodes cannot be serialized. For example, a lambda function used in a Pandas node.
  • There is a 20 second sleep after Edge deployment is done manually.
  • For deep learning, your data needs to be sent in such a way that when df.values is called it returns an array that is acceptable by your DL model. This is because the ONNX model scoring node uses df.values and sends the output to score against the model.

Features:

Alpha (May)
Features
- Using the RTML notebook template, author, test, and deploy a custom machine learning model.
- Support for importing pre-trained machine learning models.
- Real-time Machine Learning SDK.
- Starter set of authoring nodes.
- Deployed to Adobe Experience Platform Hub.
Availability
North America
Authoring Nodes
- Pandas
- ScikitLearn
- ONNXNode
- Split
- ModelUpload
- OneHotEncoder
Scoring run times
ONNX

Next steps

You can begin by following the getting started guide. This guide walks you through setting up all the required prerequisites for creating a Real-time Machine Learning model.